The Census APIs have more than 1,000 endpoints, covering dozens of
different surveys. This page shows how to get data from most of the key
surveys using censusapi
.
To see a current table of every available endpoint, run
listCensusApis
:
apis <- listCensusApis()
American Community Survey
There are multiple useful ACS datasets with slightly different purposes. Here’s how the Census Bureau describes them:
"Detailed Tables contain the most detailed cross-tabulations, many of which are published down to block groups. The data are population counts. There are over 20,000 variables in this dataset.
Subject Tables provide an overview of the estimates available in a particular topic. The data are presented as population counts and percentages. There are over 18,000 variables in this dataset.
Data Profiles contain broad social, economic, housing, and demographic information. The data are presented as population counts and percentages. There are over 1,000 variables in this dataset.
Comparison Profiles are similar to Data Profiles but also include comparisons with past-year data. The current year data are compared with prior 5-Year data and include statistical significance testing. There are over 1,000 variables in this dataset."
ACS Detailed Tables
Get total population and median income for places (towns, cities, etc) in Indiana.
acs_income <- getCensus(
name = "acs/acs5",
vintage = 2022,
vars = c("NAME", "B01001_001E", "B19013_001E"),
region = "place:*",
regionin = "state:18")
head(acs_income)
state | place | NAME | B01001_001E | B19013_001E |
---|---|---|---|---|
18 | 00140 | Aberdeen CDP, Indiana | 1756 | 129792 |
18 | 00154 | Abington CDP, Indiana | 255 | 70167 |
18 | 00352 | Adams CDP, Indiana | 190 | 21111 |
18 | 00532 | Adams Lake CDP, Indiana | 270 | 89923 |
18 | 00640 | Advance town, Indiana | 412 | 71042 |
18 | 00748 | Akron town, Indiana | 1062 | 58958 |
ACS Subject Tables
Get the percent of people without an internet subscription by income for the five counties of New York City, with associated margins of error:
- overall:
S2801_C02_019E
- income less $20,000:
S2801_C02_023E
- income $20,000 to $74,999:
S2801_C02_027E
- income $75,000 or greater:
S2801_C02_031E
acs_subject <- getCensus(
name = "acs/acs1/subject",
vintage = 2022,
vars = c("NAME", "S2801_C02_019E", "S2801_C02_019M",
"S2801_C02_023E", "S2801_C02_023M",
"S2801_C02_027E", "S2801_C02_027M",
"S2801_C02_031E", "S2801_C02_031M"),
region = "county:005,047,061,081,085",
regionin = "state:36")
head(acs_subject)
state | county | NAME | S2801_C02_019E | S2801_C02_019M | S2801_C02_023E | S2801_C02_023M | S2801_C02_027E | S2801_C02_027M | S2801_C02_031E | S2801_C02_031M |
---|---|---|---|---|---|---|---|---|---|---|
36 | 005 | Bronx County, New York | 15.8 | 1.0 | 26.7 | 2.4 | 15.0 | 1.8 | 7.5 | 1.4 |
36 | 047 | Kings County, New York | 10.9 | 0.7 | 26.9 | 2.2 | 13.0 | 1.2 | 4.0 | 0.6 |
36 | 061 | New York County, New York | 9.1 | 0.7 | 27.0 | 2.5 | 9.9 | 1.8 | 3.2 | 0.7 |
36 | 081 | Queens County, New York | 7.9 | 0.6 | 20.6 | 2.2 | 10.3 | 1.2 | 3.3 | 0.5 |
36 | 085 | Richmond County, New York | 8.9 | 1.3 | 24.5 | 6.7 | 12.8 | 2.3 | 3.9 | 1.2 |
ACS Comparison Profiles
Get the annual median household income in inflation-adjusted 2019 dollars for Alabama cities since 2018. (2020 1-year data is not available.)
acs_comparison <- getCensus(
name = "acs/acs1/cprofile",
vintage = 2022,
vars = c("NAME", "CP03_2018_062E", "CP03_2019_062E", "CP03_2021_062E", "CP03_2022_062E"),
region = "place:*",
regionin = "state:01")
head(acs_comparison)
state | place | NAME | CP03_2018_062E | CP03_2019_062E | CP03_2021_062E | CP03_2022_062E |
---|---|---|---|---|---|---|
01 | 03076 | Auburn city, Alabama | 54286 | 52853 | 52458 | 54839 |
01 | 07000 | Birmingham city, Alabama | 42549 | 42201 | 39577 | 39326 |
01 | 21184 | Dothan city, Alabama | 57471 | 54438 | 48737 | 53929 |
01 | 35896 | Hoover city, Alabama | 102124 | 113316 | 107309 | 103194 |
01 | 37000 | Huntsville city, Alabama | 64772 | 62396 | 76483 | 68930 |
01 | 50000 | Mobile city, Alabama | 45176 | 53723 | 47329 | 50051 |
ACS Migration Flows
American Community Survey Migration Flows documentation
Get the number of people who moved in and out of Los Angeles county by their origin or destination.
flows <- getCensus(
name = "acs/flows",
vintage = 2019,
vars = c("MOVEDIN", "MOVEDOUT", "GEOID2", "FULL1_NAME", "FULL2_NAME"),
region = "county:037",
regionin = "state:06")
head(flows, n = 15L)
state | county | MOVEDIN | MOVEDOUT | GEOID2 | FULL1_NAME | FULL2_NAME |
---|---|---|---|---|---|---|
06 | 037 | 2585 | NA | NA | Los Angeles County, California | Africa |
06 | 037 | 37932 | NA | NA | Los Angeles County, California | Asia |
06 | 037 | 13073 | NA | NA | Los Angeles County, California | Central America |
06 | 037 | 962 | NA | NA | Los Angeles County, California | Caribbean |
06 | 037 | 9953 | NA | NA | Los Angeles County, California | Europe |
06 | 037 | 312 | NA | NA | Los Angeles County, California | U.S. Island Areas |
06 | 037 | 1774 | NA | NA | Los Angeles County, California | Northern America |
06 | 037 | 2001 | NA | NA | Los Angeles County, California | Oceania and At Sea |
06 | 037 | 4341 | NA | NA | Los Angeles County, California | South America |
06 | 037 | 0 | 7 | 01003 | Los Angeles County, California | Baldwin County, Alabama |
06 | 037 | 9 | 0 | 01009 | Los Angeles County, California | Blount County, Alabama |
06 | 037 | 20 | 40 | 01015 | Los Angeles County, California | Calhoun County, Alabama |
06 | 037 | 0 | 9 | 01031 | Los Angeles County, California | Coffee County, Alabama |
06 | 037 | 0 | 60 | 01045 | Los Angeles County, California | Dale County, Alabama |
06 | 037 | 0 | 16 | 01051 | Los Angeles County, California | Elmore County, Alabama |
American Community Survey Language Statistics
American Community Survey Language Statistics documentation
Get the number of people in New York state who speak each language.
languages <- getCensus(
name = "language",
vintage = 2013,
vars = c("EST", "LAN", "LANLABEL"),
region = "state:36")
head(languages)
state | EST | LAN | LANLABEL |
---|---|---|---|
36 | 2705225 | 625 | Spanish |
36 | NA | 627 | Ladino |
36 | 133535 | 620 | French |
36 | 5645 | 622 | Patois |
36 | NA | 624 | Cajun |
36 | 44980 | 629 | Portuguese |
Annual Survey of Entrepreneurs
Annual Survey of Entrepreneurs documentation
ase_csa <- getCensus(
name = "ase/csa",
vintage = 2014,
vars = c("GEO_TTL", "NAICS2012", "NAICS2012_TTL", "EMPSZFI", "EMPSZFI_TTL", "FIRMPDEMP"),
region = "us:*")
head(ase_csa)
us | GEO_TTL | NAICS2012 | NAICS2012_TTL | EMPSZFI | EMPSZFI_TTL | FIRMPDEMP |
---|---|---|---|---|---|---|
1 | United States | 00 | Total for all sectors | 1 | All firms | 5437782 |
1 | United States | 00 | Total for all sectors | 611 | Firms with no employees | 547115 |
1 | United States | 00 | Total for all sectors | 612 | Firms with 1 to 4 employees | 2768756 |
1 | United States | 00 | Total for all sectors | 620 | Firms with 5 to 9 employees | 950224 |
1 | United States | 00 | Total for all sectors | 630 | Firms with 10 to 19 employees | 585516 |
1 | United States | 00 | Total for all sectors | 641 | Firms with 20 to 49 employees | 376051 |
ase_cscb <- getCensus(
name = "ase/cscb",
vintage = 2014,
vars = c("GEO_TTL", "NAICS2012_TTL", "ASECB", "ASECB_TTL", "SPOUSES", "SPOUSES_TTL", "YEAR",
"FIRMPDEMP", "FIRMPDEMP_PCT", "RCPPDEMP", "RCPPDEMP_F", "RCPPDEMP_PCT",
"EMP", "EMP_PCT", "PAYANN", "PAYANN_PCT", "FIRMPDEMP_S", "FIRMPDEMP_PCT_S",
"RCPPDEMP_S", "RCPPDEMP_PCT_S", "EMP_S", "EMP_PCT_S", "PAYANN_S", "PAYANN_PCT_S"),
region = "us:*")
head(ase_cscb)
us | GEO_TTL | NAICS2012_TTL | ASECB | ASECB_TTL | SPOUSES | SPOUSES_TTL | YEAR | FIRMPDEMP | FIRMPDEMP_PCT | RCPPDEMP | RCPPDEMP_F | RCPPDEMP_PCT | EMP | EMP_PCT | PAYANN | PAYANN_PCT | FIRMPDEMP_S | FIRMPDEMP_PCT_S | RCPPDEMP_S | RCPPDEMP_PCT_S | EMP_S | EMP_PCT_S | PAYANN_S | PAYANN_PCT_S |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | United States | Total for all sectors | 0 | All firms | A1 | All firms | 2014 | 5437782 | 0.0 | 33036935112 | NA | 0.0 | 115129295 | 0.0 | 5640982990 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.3 | 0.0 | 0.3 | 0.0 |
1 | United States | Total for all sectors | 0 | All firms | MA | Jointly owned but primarily operated by male spouse | 2014 | 336310 | 30.7 | 603733952 | NA | 18.8 | 3015332 | 21.0 | 109460428 | 20.2 | 0.8 | 0.3 | 3.2 | 1.8 | 1.8 | 3.5 | 3.0 | 3.5 |
1 | United States | Total for all sectors | 0 | All firms | LZ | Jointly owned and equally operated by spouses | 2014 | 335149 | 30.6 | 493143589 | NA | 15.4 | 3303608 | 23.0 | 104343482 | 19.2 | 0.6 | 0.3 | 3.7 | 5.5 | 1.7 | 6.2 | 1.8 | 5.5 |
1 | United States | Total for all sectors | 0 | All firms | MB | Jointly owned but primarily operated by female spouse | 2014 | 96475 | 8.8 | 140228793 | NA | 4.4 | 850573 | 5.9 | 25984506 | 4.8 | 1.9 | 0.2 | 12.6 | 1.1 | 3.6 | 0.6 | 4.7 | 0.3 |
1 | United States | Total for all sectors | 0 | All firms | MC | Not jointly owned by spouses | 2014 | 328625 | 30.0 | 1966858366 | NA | 61.4 | 7222018 | 50.2 | 302838280 | 55.8 | 0.6 | 0.5 | 2.5 | 8.1 | 1.6 | 10.3 | 1.9 | 9.0 |
1 | United States | Total for all sectors | 0 | All firms | MD | Total reporting | 2014 | 1096559 | 100.0 | 3203964700 | NA | 100.0 | 14391531 | 100.0 | 542626696 | 100.0 | 0.2 | 0.0 | 1.8 | 0.0 | 0.9 | 0.0 | 1.3 | 0.0 |
ase_cscbo <- getCensus(
name = "ase/cscbo",
vintage = 2014,
vars = c("GEO_TTL", "NAICS2012_TTL", "ASECBO", "ASECBO_TTL", "ACQBUS", "ACQBUS_TTL",
"YEAR", "OWNPDEMP", "OWNPDEMP_PCT", "OWNPDEMP_S", "OWNPDEMP_PCT_S"),
region = "us:*")
head(ase_cscbo)
us | GEO_TTL | NAICS2012_TTL | ASECBO | ASECBO_TTL | ACQBUS | ACQBUS_TTL | YEAR | OWNPDEMP | OWNPDEMP_PCT | OWNPDEMP_S | OWNPDEMP_PCT_S |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | United States | Total for all sectors | 00 | All owners of respondent firms | CA | Founded or started | 2014 | 4063687 | 70.4 | 0.2 | 0.3 |
1 | United States | Total for all sectors | 00 | All owners of respondent firms | CB | Purchased | 2014 | 1211902 | 21.0 | 0.5 | 0.2 |
1 | United States | Total for all sectors | 00 | All owners of respondent firms | CC | Inherited | 2014 | 227408 | 3.9 | 1.7 | 0.1 |
1 | United States | Total for all sectors | 00 | All owners of respondent firms | CD | Transfer of ownership or gift | 2014 | 405356 | 7.0 | 0.6 | 0.1 |
1 | United States | Total for all sectors | 00 | All owners of respondent firms | CE | Total reporting | 2014 | 5768389 | 100.0 | 0.2 | 0.0 |
1 | United States | Total for all sectors | 00 | All owners of respondent firms | CF | Item not reported | 2014 | 14476 | 0.0 | 7.3 | 0.0 |
Annual Survey of Manufactures
Annual Survey of Manufactures documentation
asm_state <- getCensus(
name = "timeseries/asm/state",
vars = c("GEO_TTL", "NAICS_TTL", "EMP"),
region = "state:*",
time = 2016,
NAICS = "31-33")
head(asm_state)
time | state | GEO_TTL | NAICS_TTL | EMP | NAICS |
---|---|---|---|---|---|
2016 | 01 | Alabama | Manufacturing | 234803 | 31-33 |
2016 | 02 | Alaska | Manufacturing | 12178 | 31-33 |
2016 | 56 | Wyoming | Manufacturing | 8377 | 31-33 |
2016 | 04 | Arizona | Manufacturing | 136946 | 31-33 |
2016 | 05 | Arkansas | Manufacturing | 145733 | 31-33 |
2016 | 06 | California | Manufacturing | 1119896 | 31-33 |
asm_product <- getCensus(
name = "timeseries/asm/product",
vars = c("PSCODE_TTL", "GEO_TTL", "PRODVAL"),
region = "us:*",
time = 2016,
PSCODE = 311111)
head(asm_product)
time | us | PSCODE_TTL | GEO_TTL | PRODVAL | PSCODE |
---|---|---|---|---|---|
2016 | 1 | Dog and cat food manufacturing | United States | 22933334 | 311111 |
Business Dynamic Statistics
Business Dynamic Statistics documentation
Get the number of firms (FIRM
) and number of net jobs
created from expanding/contracting and opening/closing establishments
during the last 12 months (NET_JOB_CREATION
) in the
construction industry (NAICS = 23
) for all years available
for Queens, New York.
bds_queens <- getCensus(
name = "timeseries/bds",
vars = c("FIRM", "NET_JOB_CREATION", "NAICS_LABEL"),
region = "county:081",
regionin = "state:36",
YEAR = "*",
NAICS = 23)
head(bds_queens)
state | county | FIRM | NET_JOB_CREATION | NAICS_LABEL | YEAR | NAICS |
---|---|---|---|---|---|---|
36 | 081 | 1777 | 1929 | Construction | 1978 | 23 |
36 | 081 | 1907 | 2257 | Construction | 1979 | 23 |
36 | 081 | 1928 | 2175 | Construction | 1980 | 23 |
36 | 081 | 1934 | -17 | Construction | 1981 | 23 |
36 | 081 | 1960 | 1575 | Construction | 1982 | 23 |
36 | 081 | 2013 | 687 | Construction | 1983 | 23 |
Get the same informtion for all states in 2021.
bds_states <- getCensus(
name = "timeseries/bds",
vars = c("FIRM", "NET_JOB_CREATION", "NAICS_LABEL"),
region = "state:*",
time = 2021,
NAICS = 23)
head(bds_states)
time | state | FIRM | NET_JOB_CREATION | NAICS_LABEL | NAICS |
---|---|---|---|---|---|
2021 | 28 | 3526 | -1756 | Construction | 23 |
2021 | 29 | 12237 | -659 | Construction | 23 |
2021 | 30 | 4958 | 650 | Construction | 23 |
2021 | 27 | 13798 | -2298 | Construction | 23 |
2021 | 31 | 5750 | 101 | Construction | 23 |
2021 | 32 | 4872 | 1447 | Construction | 23 |
Community Resiliency Estimates
Community Resilience Estimates documentation
For Census tracts in a single county, get the rate of individuals with zero components of social vulnerability, one-two components of social vulnerability, and three or more components of social vulnerability.
cre <- getCensus(
name = "cre",
vintage = 2022,
vars = c("PRED0_PE", "PRED12_PE", "PRED3_PE"),
region = "tract:*",
regionin = "state:01&county:001")
head(cre)
state | county | tract | PRED0_PE | PRED12_PE | PRED3_PE |
---|---|---|---|---|---|
01 | 001 | 020100 | 30.33 | 50.75 | 18.92 |
01 | 001 | 020200 | 37.85 | 42.84 | 19.30 |
01 | 001 | 020300 | 39.14 | 40.48 | 20.38 |
01 | 001 | 020400 | 42.73 | 40.40 | 16.87 |
01 | 001 | 020501 | 45.57 | 36.92 | 17.51 |
01 | 001 | 020502 | 37.69 | 46.91 | 15.40 |
County Business Patterns and Nonemployer Statistics
County Business Patterns and Nonemployer Statistics documentation
County Business Patterns
County Business Patterns documentation
Get employment data for the construction industry.
cbp <- getCensus(
name = "cbp",
vintage = 2021,
vars = c("EMP", "ESTAB"),
region = "state:*",
NAICS2017 = 23)
head(cbp)
state | EMP | ESTAB | NAICS2017 |
---|---|---|---|
01 | 94890 | 8434 | 23 |
02 | 15750 | 2580 | 23 |
04 | 184434 | 14289 | 23 |
05 | 51809 | 5939 | 23 |
06 | 844489 | 82744 | 23 |
08 | 178752 | 20299 | 23 |
Get the number of companies and employees at organizations with more
than 1,000 employees (EMPSZES = 260
).
cbp_large_companies <- getCensus(
name = "cbp",
vintage = 2021,
vars = c("NAME", "EMP", "ESTAB"),
region = "state:*",
EMPSZES = 260)
head(cbp_large_companies)
state | NAME | EMP | ESTAB | EMPSZES |
---|---|---|---|---|
01 | Alabama | 207510 | 108 | 260 |
02 | Alaska | 17027 | 10 | 260 |
04 | Arizona | 426257 | 188 | 260 |
05 | Arkansas | 114638 | 67 | 260 |
06 | California | 2816709 | 1040 | 260 |
08 | Colorado | 365636 | 144 | 260 |
Zip Codes Business Patterns
Zip Codes Business Patterns documentation
zbp_2018 <- getCensus(
name = "zbp",
vintage = 2018,
vars = c("EMP", "ESTAB", "EMPSZES"),
region = "zipcode:90210")
head(zbp_2018)
zip_code | EMP | ESTAB | EMPSZES |
---|---|---|---|
90210 | 35324 | 2496 | 001 |
90210 | 0 | 1758 | 210 |
90210 | 0 | 322 | 220 |
90210 | 0 | 199 | 230 |
90210 | 0 | 137 | 241 |
90210 | 0 | 50 | 242 |
Nonemployer statistics
Nonemployer statistics documentation
Get the number of nonemployer establishments by MSA for sector 54, Professional, scientific, and technical services.
nonemp <- getCensus(
name = "nonemp",
vintage = 2021,
vars = c("NAME", "NESTAB", "NAICS2017_LABEL"),
region = "metropolitan statistical area/micropolitan statistical area:*",
NAICS2017 = 54)
head(nonemp)
metropolitan_statistical_area_micropolitan_statistical_area | NAME | NESTAB | NAICS2017_LABEL | NAICS2017 |
---|---|---|---|---|
10100 | Aberdeen, SD Micro Area | 257 | Professional, scientific, and technical services | 54 |
10140 | Aberdeen, WA Micro Area | 422 | Professional, scientific, and technical services | 54 |
10180 | Abilene, TX Metro Area | 1350 | Professional, scientific, and technical services | 54 |
10220 | Ada, OK Micro Area | 237 | Professional, scientific, and technical services | 54 |
10300 | Adrian, MI Micro Area | 535 | Professional, scientific, and technical services | 54 |
10420 | Akron, OH Metro Area | 7190 | Professional, scientific, and technical services | 54 |
Decennial Census
Decennial Census documentation
2020 Decennial Census
Using the 2020 Demographic Profile, get the percent of the population that is age 65 or older (DP1_0024P) for metro and micropolitan statistical areas.
dec_elderly <- getCensus(
name = "dec/dp",
vintage = 2020,
vars = c("NAME", "DP1_0024P"),
region = "metropolitan statistical area/micropolitan statistical area:*")
head(dec_elderly)
metropolitan_statistical_area_micropolitan_statistical_area | NAME | DP1_0024P |
---|---|---|
10100 | Aberdeen, SD Micro Area | 18.6 |
10140 | Aberdeen, WA Micro Area | 22.5 |
10180 | Abilene, TX Metro Area | 16.0 |
10220 | Ada, OK Micro Area | 17.2 |
10300 | Adrian, MI Micro Area | 20.0 |
10380 | Aguadilla-Isabela, PR Metro Area | 23.0 |
Using the 2020 Demographic and Housing Characteristics File, get the total number of households (H9_001N) and the number of 1-person households (H9_002N) for counties in Maryland.
dec <- getCensus(
name = "dec/dhc",
vintage = 2020,
vars = c("NAME", "H9_001N", "H9_002N"),
region = "county:*",
regionin = "state:24")
head(dec)
state | county | NAME | H9_001N | H9_002N |
---|---|---|---|---|
24 | 009 | Calvert County, Maryland | 32754 | 6228 |
24 | 011 | Caroline County, Maryland | 12327 | 2905 |
24 | 013 | Carroll County, Maryland | 63050 | 13324 |
24 | 015 | Cecil County, Maryland | 39398 | 9613 |
24 | 017 | Charles County, Maryland | 59107 | 13282 |
24 | 019 | Dorchester County, Maryland | 13721 | 4169 |
We can use the Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) to get detailed data for specific race and ethnicity groups.
First, check the value labels for the POPGROUP
variable.
popgroup_values <- listCensusMetadata(
name = "dec/ddhca",
vintage = 2020,
type = "values",
variable_name = "POPGROUP")
head(popgroup_values)
code | label |
---|---|
001 | Total population |
002 | White alone |
003 | White alone or in combination with one or more other races |
004 | Black or African American alone |
005 | Black or African American alone or in combination with one or more other races |
006 | American Indian and Alaska Native alone |
Get the total population (T01001_001N)
of people who are Japanese alone or in any combination
(POPGROUP
code 3824) by state.
dec_population <- getCensus(
name = "dec/ddhca",
vintage = 2020,
vars = c("NAME", "T01001_001N", "POPGROUP_LABEL"),
region = "state:*",
POPGROUP = 3824)
head(dec_population)
state | NAME | T01001_001N | POPGROUP_LABEL | POPGROUP |
---|---|---|---|---|
01 | Alabama | 7276 | Japanese alone or in any combination | 3824 |
02 | Alaska | 4763 | Japanese alone or in any combination | 3824 |
06 | California | 469915 | Japanese alone or in any combination | 3824 |
04 | Arizona | 29186 | Japanese alone or in any combination | 3824 |
13 | Georgia | 22313 | Japanese alone or in any combination | 3824 |
20 | Kansas | 6009 | Japanese alone or in any combination | 3824 |
2010 Decennial Census
Get total population and the number of housing units for metropolitan/micropolitan statistical areas in 2010.
data2010 <- getCensus(
name = "dec/sf1",
vintage = 2010,
vars = c("NAME", "P001001", "H010001"),
region = "metropolitan statistical area/micropolitan statistical area:*")
head(data2010)
metropolitan_statistical_area_micropolitan_statistical_area | NAME | P001001 | H010001 |
---|---|---|---|
31540 | Madison, WI Metro Area | 568593 | 554078 |
31580 | Madisonville, KY Micro Area | 46920 | 45834 |
36820 | Oskaloosa, IA Micro Area | 22381 | 21722 |
36860 | Ottawa-Streator, IL Micro Area | 154908 | 151500 |
36900 | Ottumwa, IA Micro Area | 35625 | 34758 |
36940 | Owatonna, MN Micro Area | 36576 | 35982 |
Get the urban/rural status group of variables (P2
) by
metropolitan/micropolitan statistical areas in 2010.
# Show variable metadata for the P2 group
group_p2 <- listCensusMetadata(
name = "dec/sf1",
vintage = 2010,
type = "variables",
group = "P2")
# Get the P2 variable group (URBAN AND RURAL)
data2010 <- getCensus(
name = "dec/sf1",
vintage = 2010,
vars = "group(P2)",
region = "metropolitan statistical area/micropolitan statistical area:*")
head(data2010)
metropolitan_statistical_area_micropolitan_statistical_area | GEO_ID | P002001 | P002002 | P002003 | P002004 | P002005 | P002006 | NAME | P002001ERR |
---|---|---|---|---|---|---|---|---|---|
31540 | 310M100US31540 | 568593 | 455002 | 401661 | 53341 | 113591 | 0 | Madison, WI Metro Area | NA |
31580 | 310M100US31580 | 46920 | 24809 | 0 | 24809 | 22111 | 0 | Madisonville, KY Micro Area | NA |
36820 | 310M100US36820 | 22381 | 12545 | 0 | 12545 | 9836 | 0 | Oskaloosa, IA Micro Area | NA |
36860 | 310M100US36860 | 154908 | 94406 | 0 | 94406 | 60502 | 0 | Ottawa-Streator, IL Micro Area | NA |
36900 | 310M100US36900 | 35625 | 24771 | 0 | 24771 | 10854 | 0 | Ottumwa, IA Micro Area | NA |
36940 | 310M100US36940 | 36576 | 25394 | 0 | 25394 | 11182 | 0 | Owatonna, MN Micro Area | NA |
Get 2010 population by block group within a specific tract.
tract_pop <- getCensus(
name = "dec/sf1",
vintage = 2010,
vars = "P001001",
region = "block:*",
regionin = "state:36+county:027+tract:010000")
head(tract_pop)
state | county | tract | block | P001001 |
---|---|---|---|---|
36 | 027 | 010000 | 1000 | 31 |
36 | 027 | 010000 | 1011 | 17 |
36 | 027 | 010000 | 1028 | 41 |
36 | 027 | 010000 | 1001 | 0 |
36 | 027 | 010000 | 1031 | 0 |
36 | 027 | 010000 | 1002 | 4 |
Decennial Census Self-Response Rates
Decennial Census Self-Response Rates documentation
Get self-response rates for the 2020 and 2010 Decennial Census by state, county, tract, place and more.
Get overall and internet repose rates for all counties.
county_responses <- getCensus(
name = "dec/responserate",
vintage = 2020,
vars = c("NAME", "RESP_DATE", "CRRALL", "CRRINT"),
region = "county:*")
head(county_responses)
state | county | NAME | RESP_DATE | CRRALL | CRRINT |
---|---|---|---|---|---|
21 | 137 | Lincoln County, Kentucky | 2021-01-29 | 69.1 | 26.7 |
21 | 139 | Livingston County, Kentucky | 2021-01-29 | 62.6 | 32.7 |
21 | 143 | Lyon County, Kentucky | 2021-01-29 | 55.6 | 24.1 |
21 | 145 | McCracken County, Kentucky | 2021-01-29 | 71.9 | 56.7 |
21 | 149 | McLean County, Kentucky | 2021-01-29 | 63.8 | 26.2 |
21 | 151 | Madison County, Kentucky | 2021-01-29 | 72.2 | 60.3 |
Get response rates for places (cities, towns, etc) within New York state.
ny_place_responses <- getCensus(
name = "dec/responserate",
vintage = 2020,
vars = c("NAME", "RESP_DATE", "CRRALL", "CRRINT"),
region = "place:*",
regionin = "state:36")
head(ny_place_responses)
state | place | NAME | RESP_DATE | CRRALL | CRRINT |
---|---|---|---|---|---|
36 | 23745 | Elba village, New York | 2021-01-29 | 66.3 | 52.9 |
36 | 23965 | Ellenville village, New York | 2021-01-29 | 58.5 | 45.3 |
36 | 24075 | Ellisburg village, New York | 2021-01-29 | 52.6 | 18.1 |
36 | 24229 | Elmira city, New York | 2021-01-29 | 60.1 | 40.8 |
36 | 24295 | Elmsford village, New York | 2021-01-29 | 62.9 | 55.1 |
36 | 24515 | Endicott village, New York | 2021-01-29 | 58.4 | 45.1 |
Get final 2010 Decennial Census self-response rates.
county_responses_2010 <- getCensus(
name = "dec/responserate",
vintage = 2010,
vars = c("NAME", "FSRR2010"),
region = "county:*")
head(county_responses_2010)
state | county | NAME | FSRR2010 |
---|---|---|---|
01 | 001 | Autauga County, Alabama | 68.6 |
01 | 003 | Baldwin County, Alabama | 59.4 |
01 | 005 | Barbour County, Alabama | 55.2 |
01 | 007 | Bibb County, Alabama | 54.8 |
01 | 009 | Blount County, Alabama | 66.3 |
01 | 011 | Bullock County, Alabama | 34.0 |
Decennial Census Surname Files
Decennial Census Surname documentation
Get counts of the top 25 most popular surnames and share of each by race.
top_surnames <- getCensus(
name = "surname",
vintage = 2010,
vars = c("NAME", "COUNT", "PROP100K", "PCTWHITE", "PCTBLACK", "PCTAIAN", "PCTAPI", "PCTHISPANIC", "PCT2PRACE"),
RANK = "1:25")
head(top_surnames)
NAME | COUNT | PROP100K | PCTWHITE | PCTBLACK | PCTAIAN | PCTAPI | PCTHISPANIC | PCT2PRACE | RANK |
---|---|---|---|---|---|---|---|---|---|
ANDERSON | 784404 | 265.92 | 75.17 | 18.93 | 0.74 | 0.61 | 2.44 | 2.11 | 15 |
BROWN | 1437026 | 487.16 | 57.95 | 35.60 | 0.87 | 0.51 | 2.52 | 2.55 | 4 |
DAVIS | 1116357 | 378.45 | 62.20 | 31.60 | 0.82 | 0.49 | 2.44 | 2.45 | 8 |
GARCIA | 1166120 | 395.32 | 5.38 | 0.45 | 0.47 | 1.41 | 92.03 | 0.26 | 6 |
GONZALEZ | 841025 | 285.11 | 4.03 | 0.35 | 0.14 | 0.38 | 94.97 | 0.13 | 13 |
HARRIS | 624252 | 211.63 | 51.40 | 42.39 | 0.67 | 0.47 | 2.26 | 2.80 | 25 |
Economic Census
ewks_2012 <- getCensus(
name = "ewks",
vintage = 2012,
vars = c("EMP", "OPTAX", "GEOTYPE"),
region = "state:*",
NAICS2012 = 54)
head(ewks_2012)
state | EMP | OPTAX | GEOTYPE | NAICS2012 |
---|---|---|---|---|
01 | 89988 | A | 02 | 54 |
01 | 88566 | T | 02 | 54 |
01 | 1422 | Y | 02 | 54 |
02 | 17648 | A | 02 | 54 |
08 | 4616 | Y | 02 | 54 |
02 | 17328 | T | 02 | 54 |
ewks_2007 <- getCensus(
name = "ewks",
vintage = 2007,
vars = c("EMP", "OPTAX", "GEOTYPE"),
region = "state:*",
NAICS2007 = 54)
head(ewks_2007)
state | EMP | OPTAX | GEOTYPE | NAICS2007 |
---|---|---|---|---|
01 | 94051 | A | 2 | 54 |
01 | 92759 | T | 2 | 54 |
01 | 1292 | Y | 2 | 54 |
02 | 12843 | A | 2 | 54 |
02 | 12509 | T | 2 | 54 |
02 | 334 | Y | 2 | 54 |
Economic Indicators
Economic Indicators documentation
eits <- getCensus(
name = "timeseries/eits/resconst",
vars = c("cell_value", "data_type_code", "time_slot_id", "error_data", "category_code", "seasonally_adj"),
region = "us:*",
time = "from 2023-01")
head(eits)
cell_value | data_type_code | time_slot_id | error_data | category_code | seasonally_adj | time | us |
---|---|---|---|---|---|---|---|
999 | SINGLE | 0 | no | APERMITS | yes | 2023-12 | 1 |
1354 | TOTAL | 0 | no | APERMITS | yes | 2023-01 | 1 |
1482 | TOTAL | 0 | no | APERMITS | yes | 2023-02 | 1 |
1437 | TOTAL | 0 | no | APERMITS | yes | 2023-03 | 1 |
1417 | TOTAL | 0 | no | APERMITS | yes | 2023-04 | 1 |
1496 | TOTAL | 0 | no | APERMITS | yes | 2023-05 | 1 |
Health Insurance: Small Area Health Insurance Estimates
Health Insurance Statistics documentation
Get the uninsured rate by income group for each county for a single year.
sahie <- getCensus(
name = "timeseries/healthins/sahie",
vars = c("NAME", "IPRCAT", "IPR_DESC", "PCTUI_PT"),
region = "county:*",
time = 2021)
head(sahie)
time | state | county | NAME | IPRCAT | IPR_DESC | PCTUI_PT |
---|---|---|---|---|---|---|
2021 | 01 | 001 | Autauga County, AL | 0 | All Incomes | 10.0 |
2021 | 01 | 001 | Autauga County, AL | 1 | <= 200% of Poverty | 18.8 |
2021 | 01 | 001 | Autauga County, AL | 2 | <= 250% of Poverty | 17.5 |
2021 | 01 | 001 | Autauga County, AL | 3 | <= 138% of Poverty | 20.3 |
2021 | 01 | 001 | Autauga County, AL | 4 | <= 400% of Poverty | 13.6 |
2021 | 01 | 001 | Autauga County, AL | 5 | 138% to 400% of Poverty | 10.5 |
Get the uninsured rate for a county from 2006 to the latest year available.
sahie_annual <- getCensus(
name = "timeseries/healthins/sahie",
vars = c("NAME", "PCTUI_PT"),
region = "county:037",
regionin = "state:06",
time = "from 2006")
sahie_annual
time | state | county | NAME | PCTUI_PT |
---|---|---|---|---|
2006 | 06 | 037 | Los Angeles County, CA | 23.8 |
2007 | 06 | 037 | Los Angeles County, CA | 23.1 |
2008 | 06 | 037 | Los Angeles County, CA | 23.8 |
2009 | 06 | 037 | Los Angeles County, CA | 24.9 |
2010 | 06 | 037 | Los Angeles County, CA | 25.9 |
2011 | 06 | 037 | Los Angeles County, CA | 24.8 |
2012 | 06 | 037 | Los Angeles County, CA | 24.5 |
2013 | 06 | 037 | Los Angeles County, CA | 23.7 |
2014 | 06 | 037 | Los Angeles County, CA | 17.4 |
2015 | 06 | 037 | Los Angeles County, CA | 12.5 |
2016 | 06 | 037 | Los Angeles County, CA | 10.7 |
2017 | 06 | 037 | Los Angeles County, CA | 10.1 |
2018 | 06 | 037 | Los Angeles County, CA | 10.2 |
2019 | 06 | 037 | Los Angeles County, CA | 11.1 |
2020 | 06 | 037 | Los Angeles County, CA | 10.2 |
2021 | 06 | 037 | Los Angeles County, CA | 10.1 |
Get the uninsured rate for non-elderly adults
(AGECAT = 1
) with incomes of 138 to 400% of the poverty
line (IPRCAT = 5
), by race and state.
sahie_adults <- getCensus(
name = "timeseries/healthins/sahie",
vars = c("NAME", "PCTUI_PT", "RACECAT", "RACE_DESC"),
region = "state:*",
time = 2021,
IPRCAT = 5,
AGECAT = 1)
head(sahie_adults)
time | state | NAME | PCTUI_PT | RACECAT | RACE_DESC | IPRCAT | AGECAT |
---|---|---|---|---|---|---|---|
2021 | 01 | Alabama | 15.9 | 0 | All Races | 5 | 1 |
2021 | 01 | Alabama | 14.1 | 1 | White alone, not Hispanic or Latino | 5 | 1 |
2021 | 01 | Alabama | 15.4 | 2 | Black or African American alone, not Hispanic or Latino | 5 | 1 |
2021 | 29 | Missouri | 23.1 | 6 | Native Hawaiian and Other Pacific Islander alone, not Hispanic or Latino | 5 | 1 |
2021 | 01 | Alabama | 40.4 | 3 | Hispanic or Latino (any race) | 5 | 1 |
2021 | 01 | Alabama | 20.8 | 4 | American Indian and Alaska Native alone, not Hispanic or Latino | 5 | 1 |
Household Pulse Survey
Household Pulse Survey documentation
Get the food scarcity rate (Percentage of adults in households where there was either sometimes or often not enough to eat in the last 7 days) and expense difficulty rate (Percentage of adults in households where it has been somewhat or very difficult to pay for usual household expenses in the last 7 days) for every state for one survey period.
hps_state <- getCensus(
name = "timeseries/hps",
vars = c("NAME", "FOODSCARCE_RATE", "EXPENSE_RATE",
"COL_START_DATE", "COL_END_DATE"),
region = "state:*",
WEEK = 63,
time = 2023)
head(hps_state)
time | state | NAME | FOODSCARCE_RATE | EXPENSE_RATE | COL_START_DATE | COL_END_DATE | WEEK |
---|---|---|---|---|---|---|---|
2023 | 01 | Alabama | 14.6 | 44.2 | October 18, 2023 | October 30, 2023 | 63 |
2023 | 02 | Alaska | 15.3 | 36.7 | October 18, 2023 | October 30, 2023 | 63 |
2023 | 04 | Arizona | 14.4 | 43.3 | October 18, 2023 | October 30, 2023 | 63 |
2023 | 05 | Arkansas | 13.2 | 45.9 | October 18, 2023 | October 30, 2023 | 63 |
2023 | 06 | California | 11.4 | 41.4 | October 18, 2023 | October 30, 2023 | 63 |
2023 | 08 | Colorado | 11.5 | 35.5 | October 18, 2023 | October 30, 2023 | 63 |
Get the national food scarcity rate and expense difficulty rate for every survey period available since 2022.
hps_us <- getCensus(
name = "timeseries/hps",
vars = c("FOODSCARCE_RATE", "EXPENSE_RATE",
"COL_START_DATE", "COL_END_DATE"),
region = "us:*",
WEEK = "*",
time = "from 2022")
hps_us
time | us | FOODSCARCE_RATE | EXPENSE_RATE | COL_START_DATE | COL_END_DATE | WEEK |
---|---|---|---|---|---|---|
2023 | 1 | 12.5 | 40.8 | October 18, 2023 | October 30, 2023 | 63 |
2023 | 1 | 12.4 | 41.2 | September 20, 2023 | October 2, 2023 | 62 |
2023 | 1 | 12.1 | 37.3 | August 23, 2023 | September 4, 2023 | 61 |
2023 | 1 | 12.1 | 38.9 | July 26, 2023 | August 7, 2023 | 60 |
2023 | 1 | 12.1 | 37.8 | June 28, 2023 | July 10, 2023 | 59 |
2023 | 1 | 11.8 | 38.6 | June 7, 2023 | June 19, 2023 | 58 |
2023 | 1 | 11.3 | 38.5 | April 26, 2023 | May 8, 2023 | 57 |
2023 | 1 | 10.9 | 38.7 | March 29, 2023 | April 10, 2023 | 56 |
2023 | 1 | 10.7 | 38.5 | March 1, 2023 | March 13, 2023 | 55 |
2023 | 1 | 11.4 | 39.7 | February 4, 2023 | February 13, 2023 | 54 |
2023 | 1 | 11.2 | 39.5 | January 4, 2023 | January 16, 2023 | 53 |
2022 | 1 | 11.4 | 40.0 | December 9, 2022 | December 19, 2022 | 52 |
2022 | 1 | 11.0 | 39.5 | November 2, 2022 | November 14, 2022 | 51 |
2022 | 1 | 11.4 | 40.9 | October 5, 2022 | October 17, 2022 | 50 |
2022 | 1 | 11.5 | 40.1 | September 14, 2022 | September 26, 2022 | 49 |
2022 | 1 | 11.5 | 40.1 | July 27, 2022 | August 8, 2022 | 48 |
2022 | 1 | 11.9 | 40.0 | June 29, 2022 | July 11, 2022 | 47 |
2022 | 1 | 11.1 | 39.1 | June 1, 2022 | June 13, 2022 | 46 |
2022 | 1 | 11.2 | 34.4 | April 27, 2022 | May 9, 2022 | 45 |
2022 | 1 | 11.2 | 34.1 | March 30, 2022 | April 11, 2022 | 44 |
2022 | 1 | 10.3 | 34.3 | March 2, 2022 | March 14, 2022 | 43 |
2022 | 1 | 10.1 | 32.3 | January 26, 2022 | February 7, 2022 | 42 |
2022 | 1 | 10.2 | 31.3 | December 29, 2021 | January 10, 2022 | 41 |
International Data Base
International Data Base documentation
Get Census Bureau projections of 2024 populations and life expectancy at birth by country.
intl_pop <- getCensus(
name = "timeseries/idb/5year",
vars = c("NAME", "GENC", "POP", "E0"),
time = 2024)
head(intl_pop)
time | NAME | GENC | POP | E0 |
---|---|---|---|---|
2024 | Andorra | AD | 85370 | 83.80 |
2024 | United Arab Emirates | AE | 10032213 | 79.94 |
2024 | Afghanistan | AF | 40121552 | 54.44 |
2024 | Antigua and Barbuda | AG | 102634 | 78.28 |
2024 | Anguilla | AI | 19416 | 82.61 |
2024 | Albania | AL | 3107100 | 79.93 |
International Trade
International Trade documentation
Note: The international trade datasets can be buggy and often give the general error message of “There was an error while running your query. We’ve logged the error and we’ll correct it ASAP. Sorry for the inconvenience.” This error message comes from the U.S. Census Bureau. If you run in to repeated issues or inconsistencies, contact the Census Bureau for help or consider using a bulk data download instead.
Get the general imports value and imports for consumption value for all countries for a specific month.
imports <- getCensus(
name = "timeseries/intltrade/imports/enduse",
vars = c("CTY_CODE", "CTY_NAME", "GEN_VAL_MO", "CON_VAL_MO"),
time = "2024-01")
head(imports)
time | CTY_CODE | CTY_NAME | GEN_VAL_MO | CON_VAL_MO |
---|---|---|---|---|
2024-01 | - | TOTAL FOR ALL COUNTRIES | 253796657727 | 254565546221 |
2024-01 | 0003 | EUROPEAN UNION | 46556315322 | 46280913991 |
2024-01 | 0014 | PACIFIC RIM COUNTRIES | 79572147272 | 79225173215 |
2024-01 | 0017 | CAFTA-DR | 2478595066 | 2473338341 |
2024-01 | 0020 | NAFTA | 71351448154 | 71232155920 |
2024-01 | 0021 | TWENTY LATIN AMERICAN REPUBLICS | 50116067956 | 50453986362 |
Population Estimates and Projections
Population Estimates and Projections documentation
Population Estimates
Population Estimates documentation
PEP data from 2022 and beyond is not currently available via API. You can download the latest data files from the PEP webpage.
Get the 2021 vintage population estimates for states for 2020 and 2021.
popest <- getCensus(
name = "pep/population",
vintage = 2021,
vars = c("POP_2020","POP_2021"),
region = "state:*")
head(popest)
state | POP_2020 | POP_2021 |
---|---|---|
40 | 3962031 | 3986639 |
31 | 1961455 | 1963692 |
15 | 1451911 | 1441553 |
46 | 887099 | 895376 |
47 | 6920119 | 6975218 |
32 | 3114071 | 3143991 |
popest_housing <- getCensus(
name = "pep/housing",
vintage = 2018,
vars = c("DATE_CODE", "DATE_DESC", "HUEST"),
region = "county:195",
regionin = "state:02")
head(popest_housing)
state | county | DATE_CODE | DATE_DESC | HUEST |
---|---|---|---|---|
02 | 195 | 1 | 4/1/2010 Census housing unit count | 1994 |
02 | 195 | 2 | 4/1/2010 housing unit estimates base | 1644 |
02 | 195 | 3 | 7/1/2010 housing unit estimate | 1646 |
02 | 195 | 4 | 7/1/2011 housing unit estimate | 1647 |
02 | 195 | 5 | 7/1/2012 housing unit estimate | 1659 |
02 | 195 | 6 | 7/1/2013 housing unit estimate | 1662 |
Population Projections
Population Projections documentation
popproj <- getCensus(
name = "pep/projpop",
vintage = 2014,
vars = c("YEAR", "POP", "AGE"),
region = "us:1")
head(popproj)
us | YEAR | POP | AGE |
---|---|---|---|
1 | 2014 | 3971847 | 0 |
1 | 2014 | 3957864 | 1 |
1 | 2014 | 3972081 | 2 |
1 | 2014 | 4003272 | 3 |
1 | 2014 | 4001929 | 4 |
1 | 2014 | 4002977 | 5 |
Poverty Statistics
Poverty Statistics documentation
Current Population Survey Poverty Statistics
Get national poverty rates by race since 1970.
poverty <- getCensus(
name = "timeseries/poverty/histpov2",
vars = c("RACE", "RACE_LABEL", "PCTPOV"),
region = "us:*",
time = "from 1970")
head(poverty)
time | us | RACE | RACE_LABEL | PCTPOV |
---|---|---|---|---|
2022 | 1 | 1 | All races | 11.5 |
2022 | 1 | 2 | White alone | 10.5 |
2022 | 1 | 4 | White alone, not Hispanic | 8.6 |
2022 | 1 | 6 | Black alone or in combination | 17.0 |
2022 | 1 | 7 | Black alone | 17.1 |
2022 | 1 | 9 | Asian alone or in combination | 8.2 |
Small Area Income and Poverty Estimates (SAIPE)
Get poverty rate for children and overall for a single year.
saipe <- getCensus(
name = "timeseries/poverty/saipe",
vars = c("NAME", "SAEPOVRT0_17_PT", "SAEPOVRTALL_PT"),
region = "state:*",
time = 2022)
head(saipe)
time | state | NAME | SAEPOVRT0_17_PT | SAEPOVRTALL_PT |
---|---|---|---|---|
2022 | 01 | Alabama | 21.8 | 16.2 |
2022 | 02 | Alaska | 13.4 | 10.8 |
2022 | 04 | Arizona | 16.0 | 12.5 |
2022 | 05 | Arkansas | 21.2 | 16.3 |
2022 | 06 | California | 15.3 | 12.2 |
2022 | 08 | Colorado | 11.1 | 9.5 |
Get the poverty rate for children and overall in a single county over time.
saipe_years <- getCensus(
name = "timeseries/poverty/saipe",
vars = c("NAME", "SAEPOVRT0_17_PT", "SAEPOVRTALL_PT"),
region = "county:001",
regionin = "state:12",
time = "from 2010")
head(saipe_years)
time | state | county | NAME | SAEPOVRT0_17_PT | SAEPOVRTALL_PT |
---|---|---|---|---|---|
2010 | 12 | 001 | Alachua County | 26.3 | 25.3 |
2011 | 12 | 001 | Alachua County | 21.8 | 23.5 |
2012 | 12 | 001 | Alachua County | 26.9 | 26.6 |
2013 | 12 | 001 | Alachua County | 25.7 | 25.7 |
2014 | 12 | 001 | Alachua County | 22.1 | 21.6 |
2015 | 12 | 001 | Alachua County | 21.6 | 21.1 |
SAIPE School Districts
Get the number (SAEPOV5_17V_PT
) and rate
(SAEPOVRAT5_17RV_PT
) of children ages 5-17 living in
poverty for unified school districts in Massachusetts.
saipe_schools <- getCensus(
name = "timeseries/poverty/saipe/schdist",
vars = c("SD_NAME", "SAEPOV5_17V_PT", "SAEPOVRAT5_17RV_PT"),
region = "school district (unified):*",
regionin = "state:25",
time = 2022)
head(saipe_schools)
time | state | school_district_unified | SD_NAME | SAEPOV5_17V_PT | SAEPOVRAT5_17RV_PT |
---|---|---|---|---|---|
2022 | 25 | 00001 | Quabbin School District | 2389 | 6.9 |
2022 | 25 | 00002 | Spencer-East Brookfield School District | 1949 | 9.5 |
2022 | 25 | 00013 | Southwick-Tolland-Granville Regional School District | 1520 | 6.6 |
2022 | 25 | 00067 | Manchester Essex Regional School District | 1568 | 4.1 |
2022 | 25 | 00542 | Ayer-Shirley School District | 2005 | 6.8 |
2022 | 25 | 00544 | Monomoy Regional School District | 1853 | 6.9 |
Public Sector Statistics
Public Sector Statistics documentation
This endpoint includes data from multiple surveys organized be sure to read the Census Bureau’s documentation for variable definitions and labels.
Get expenditures for Public Elementary-Secondary School System Finances for Massachusetts.
govs <- getCensus(
name = "timeseries/govs",
vars = c("SVY_COMP_LABEL", "AGG_DESC", "AGG_DESC_LABEL" ,"AMOUNT"),
region = "state:25",
time = 2021,
SVY_COMP = "06",
EXPENDTYPE = "001")
head(govs)
time | state | SVY_COMP_LABEL | AGG_DESC | AGG_DESC_LABEL | AMOUNT | SVY_COMP | EXPENDTYPE |
---|---|---|---|---|---|---|---|
2021 | 25 | Annual Survey of School System Finance | SS0601 | Total current spending | 18965809 | 6 | 1 |
2021 | 25 | Annual Survey of School System Finance | SS0604 | Current spending - Instruction - Total | 12362698 | 6 | 1 |
2021 | 25 | Annual Survey of School System Finance | SS0610 | Current spending - All other functions | 417245 | 6 | 1 |
2021 | 25 | Annual Survey of School System Finance | SS0708 | Current spending - Support services - Other and nonspecified support services | 418997 | 6 | 1 |
2021 | 25 | Annual Survey of School System Finance | SS0701 | Current spending - Support services - Total | 6185866 | 6 | 1 |
2021 | 25 | Annual Survey of School System Finance | SS0702 | Current spending - Support services - Pupil support services | 1551012 | 6 | 1 |
Quarterly Workforce Indicators
Quarterly Workforce Indicators documentation
The QWI endpoints allow both simple calls and very specific ones. Make sure to read the documentation closely. Here’s a simple call that gets employment data by county.
qwi_counties <- getCensus(
name = "timeseries/qwi/sa",
vars = c("Emp", "EarnBeg"),
region = "county:*",
regionin = "state:01",
time = "2023-Q2")
head(qwi_counties)
Emp | EarnBeg | time | state | county |
---|---|---|---|---|
11882 | 3936 | 2023-Q2 | 01 | 001 |
82571 | 3798 | 2023-Q2 | 01 | 003 |
7157 | 3208 | 2023-Q2 | 01 | 005 |
4735 | 3929 | 2023-Q2 | 01 | 007 |
9140 | 3513 | 2023-Q2 | 01 | 009 |
2267 | 3623 | 2023-Q2 | 01 | 011 |
Got total employment and average earnings by quarter for a single state.
qwi_time <- getCensus(
name = "timeseries/qwi/sa",
vars = c("Emp", "EarnBeg"),
region = "state:01",
time = "from 2018 to 2023")
head(qwi_time)
Emp | EarnBeg | time | state |
---|---|---|---|
1881802 | 3515 | 2018-Q1 | 01 |
1891332 | 3471 | 2018-Q2 | 01 |
1911623 | 3434 | 2018-Q3 | 01 |
1908747 | 3687 | 2018-Q4 | 01 |
1913757 | 3597 | 2019-Q1 | 01 |
1918965 | 3578 | 2019-Q2 | 01 |
Here’s a much more specific call. Read the Census Bureau’s documentation closely to see all of the options allowed by the QWI APIs.
qwi <- getCensus(
name = "timeseries/qwi/sa",
region = "state:02",
vars = c("Emp", "sex"),
time = 2012,
quarter = 1,
agegrp = "A07",
ownercode = "A05",
firmsize = 1,
seasonadj = "U",
industry = 21)
qwi
Emp | sex | time | quarter | agegrp | ownercode | firmsize | seasonadj | industry | state |
---|---|---|---|---|---|---|---|---|---|
54 | 0 | 2012-Q1 | 1 | A07 | A05 | 1 | U | 21 | 02 |
48 | 1 | 2012-Q1 | 1 | A07 | A05 | 1 | U | 21 | 02 |
6 | 2 | 2012-Q1 | 1 | A07 | A05 | 1 | U | 21 | 02 |
The Planning Database
The Planning Database documentation
Get population and 2010 Census mail return rates for block groups in Autauga County, AL.
pdb <- getCensus(
name = "pdb/blockgroup",
vintage = 2018,
vars = c("GIDBG", "County_name", "State_name", "Tot_Population_CEN_2010", "Mail_Return_Rate_CEN_2010"),
region = "block group:*",
regionin = "state:01+county:001")
head(pdb)
County_name | State_name | Tot_Population_CEN_2010 | Mail_Return_Rate_CEN_2010 | state | county | tract | block_group | GIDBG |
---|---|---|---|---|---|---|---|---|
Autauga County | Alabama | 570 | 79.7 | 01 | 001 | 020400 | 4 | 10010204004 |
Autauga County | Alabama | 1737 | 84.6 | 01 | 001 | 020500 | 1 | 10010205001 |
Autauga County | Alabama | 7023 | 72.8 | 01 | 001 | 020500 | 2 | 10010205002 |
Autauga County | Alabama | 2006 | 86.0 | 01 | 001 | 020500 | 3 | 10010205003 |
Autauga County | Alabama | 2423 | 87.8 | 01 | 001 | 020600 | 1 | 10010206001 |
Autauga County | Alabama | 1245 | 73.4 | 01 | 001 | 020600 | 2 | 10010206002 |